Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.270
Filtrar
1.
Biochem J ; 481(9): 601-613, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38592741

RESUMO

Knowledge of the primary structure of neuronal NO synthase (nNOS) in skeletal muscle is still conflicting and needs further clarification. To elucidate the expression patterns of nNOS isoforms at both mRNA and protein level, systematic reverse transcription (RT)-PCR and epitope mapping by qualitative immunoblot analysis on skeletal muscle of C57/BL6 mice were performed. The ability of the nNOS isoforms to form aggregates was characterized by native low-temperature polyacrylamide electrophoresis (LT-PAGE). The molecular analysis was focused on the rectus femoris (RF) muscle, a skeletal muscle with a nearly balanced ratio of nNOS α- and ß-isoforms. RT-PCR amplificates from RF muscles showed exclusive exon-1d mRNA expression, either with or without exon-µ. Epitope mapping demonstrated the simultaneous expression of the nNOS splice variants α/µ, α/non-µ, ß/µ and ß/non-µ. Furthermore, immunoblotting suggests that the transition between nNOS α- and ß-isoforms lies within exon-3. In LT-PAGE, three protein nNOS associated aggregates were detected in homogenates of RF muscle and tibialis anterior muscle: a 320 kDa band containing nNOS α-isoforms, while 250 and 300 kDa bands consist of nNOS ß-isoforms that form homodimers or heterodimers with non-nNOS proteins.


Assuntos
Camundongos Endogâmicos C57BL , Músculo Esquelético , Óxido Nítrico Sintase Tipo I , Animais , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo I/genética , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/enzimologia , Isoenzimas/metabolismo , Isoenzimas/genética , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Éxons
2.
J Biol Chem ; 300(3): 105692, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301892

RESUMO

PKC is a multifunctional family of Ser-Thr kinases widely implicated in the regulation of fundamental cellular functions, including proliferation, polarity, motility, and differentiation. Notwithstanding their primary cytoplasmic localization and stringent activation by cell surface receptors, PKC isozymes impel prominent nuclear signaling ultimately impacting gene expression. While transcriptional regulation may be wielded by nuclear PKCs, it most often relies on cytoplasmic phosphorylation events that result in nuclear shuttling of PKC downstream effectors, including transcription factors. As expected from the unique coupling of PKC isozymes to signaling effector pathways, glaring disparities in gene activation/repression are observed upon targeting individual PKC family members. Notably, specific PKCs control the expression and activation of transcription factors implicated in cell cycle/mitogenesis, epithelial-to-mesenchymal transition and immune function. Additionally, PKCs isozymes tightly regulate transcription factors involved in stepwise differentiation of pluripotent stem cells toward specific epithelial, mesenchymal, and hematopoietic cell lineages. Aberrant PKC expression and/or activation in pathological conditions, such as in cancer, leads to profound alterations in gene expression, leading to an extensive rewiring of transcriptional networks associated with mitogenesis, invasiveness, stemness, and tumor microenvironment dysregulation. In this review, we outline the current understanding of PKC signaling "in" and "to" the nucleus, with significant focus on established paradigms of PKC-mediated transcriptional control. Dissecting these complexities would allow the identification of relevant molecular targets implicated in a wide spectrum of diseases.


Assuntos
Regulação da Expressão Gênica , Proteína Quinase C , Transdução de Sinais , Regulação da Expressão Gênica/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Fatores de Transcrição/metabolismo , Humanos , Animais , Núcleo Celular/enzimologia , Núcleo Celular/genética
3.
Matrix Biol ; 125: 73-87, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081527

RESUMO

Collagen biosynthesis requires several co- and post-translational modifications of lysine and proline residues to form structurally and functionally competent collagen molecules. Formation of 4-hydroxyproline (4Hyp) in Y-position prolines of the repetitive -X-Y-Gly- sequences provides thermal stability for the triple-helical collagen molecules. 4Hyp formation is catalyzed by a collagen prolyl 4-hydroxylase (C-P4H) family consisting of three isoenzymes. Here we identify specific roles for the two main C-P4H isoenzymes in collagen hydroxylation by a detailed 4Hyp analysis of type I and IV collagens derived from cell and tissue samples. Loss of C-P4H-I results in underhydroxylation of collagen where the affected prolines are not uniformly distributed, but mainly present in sites where the adjacent X-position amino acid has a positively charged or a polar uncharged side chain. In contrast, loss of C-P4H-II results in underhydroxylation of triplets where the X-position is occupied by a negatively charged amino acid glutamate or aspartate. Hydroxylation of these triplets was found to be important as loss of C-P4H-II alone resulted in reduced collagen melting temperature and altered assembly of collagen fibrils and basement membrane. The observed C-P4H isoenzyme differences in substrate specificity were explained by selective binding of the substrate to the active site resulting in distinct differences in Km and Vmax values. Furthermore, our results clearly show that the substrate proline selection is not dependent on the collagen type, but the main determinant is the X-position amino acid of the -X-Pro-Gly- triplet. Although our data clearly shows the necessity of both C-P4H-I and II for normal prolyl 4-hydroxylation and function of collagens, the mRNA expression of the isoenzymes with various procollagens was, surprisingly, not tightly coordinated, suggesting additional levels of control. In conclusion, this study provides a molecular level explanation for the need of multiple C-P4H isoenzymes to generate collagen molecules capable to assemble into intact extracellular matrix structures.


Assuntos
Dipeptídeos , Isoenzimas , Prolil Hidroxilases , Prolil Hidroxilases/genética , Isoenzimas/genética , Colágeno Tipo I/genética , Pró-Colágeno-Prolina Dioxigenase/genética , Pró-Colágeno-Prolina Dioxigenase/química , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Colágeno/genética , Colágeno/metabolismo , Prolina/metabolismo
4.
Cells ; 12(24)2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38132153

RESUMO

The serine/threonine protein kinase CK2 is implicated in the regulation of fundamental processes in eukaryotic cells. CK2 consists of two catalytic α or α' isoforms and two regulatory CK2ß subunits. These three proteins exist in a free form, bound to other cellular proteins, as tetrameric holoenzymes composed of CK2α2/ß2, CK2αα'/ß2, or CK2α'2/ß2 as well as in higher molecular forms of the tetramers. The catalytic domains of CK2α and CK2α' share a 90% identity. As CK2α contains a unique C-terminal sequence. Both proteins function as protein kinases. These properties raised the question of whether both isoforms are just backups of each other or whether they are regulated differently and may then function in an isoform-specific manner. The present review provides observations that the regulation of both CK2α isoforms is partly different concerning the subcellular localization, post-translational modifications, and aggregation. Up to now, there are only a few isoform-specific cellular binding partners. The expression of both CK2α isoforms seems to vary in different cell lines, in tissues, in the cell cycle, and with differentiation. There are different reports about the expression and the functions of the CK2α isoforms in tumor cells and tissues. In many cases, a cell-type-specific expression and function is known, which raises the question about cell-specific regulators of both isoforms. Another future challenge is the identification or design of CK2α'-specific inhibitors.


Assuntos
Caseína Quinase II , Humanos , Animais , Caseína Quinase II/química , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo
5.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958781

RESUMO

The protein kinase C (PKC) family plays important regulatory roles in numerous cellular processes. Saccharomyces cerevisiae contains a single PKC, Pkc1, whereas in mammals, the PKC family comprises nine isoforms. Both Pkc1 and the novel isoform PKCδ are involved in the control of DNA integrity checkpoint activation, demonstrating that this mechanism is conserved from yeast to mammals. To explore the function of PKCδ in a non-tumor cell line, we employed CRISPR-Cas9 technology to obtain PKCδ knocked-out mouse embryonic stem cells (mESCs). This model demonstrated that the absence of PKCδ reduced the activation of the effector kinase CHK1, although it suggested that other isoform(s) might contribute to this function. Therefore, we used yeast to study the ability of each single PKC isoform to activate the DNA integrity checkpoint. Our analysis identified that PKCθ, the closest isoform to PKCδ, was also able to perform this function, although with less efficiency. Then, by generating truncated and mutant versions in key residues, we uncovered differences between the activation mechanisms of PKCδ and PKCθ and identified their essential domains. Our work strongly supports the role of PKC as a key player in the DNA integrity checkpoint pathway and highlights the advantages of combining distinct research models.


Assuntos
Proteína Quinase C , Saccharomyces cerevisiae , Animais , Camundongos , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Mamíferos/metabolismo , DNA , Proteína Quinase C-delta/genética
6.
Mol Biol Rep ; 50(11): 9649-9661, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37819495

RESUMO

Glutathione S-transferases are a family of enzymes, whose main role is to detoxify cells from many exogenous factors, such as xenobiotics or carcinogens. It has also been proven that changes in the genes encoding these enzymes may affect the incidence of selected cancers and cardiovascular diseases. The aim of this study was to review the most important reports related to the role of glutathione S-transferases in the pathophysiology of two of the most common diseases in modern society - cancers and cardiovascular diseases. It was shown that polymorphisms in the genes encoding glutathione S-transferases are associated with the development of these diseases. However, depending on the ethnic group, the researchers obtained divergent results related to this field. In the case of the GSTP1 A/G gene polymorphism was shown an increased incidence of breast cancer in Asian women, while this relationship in European and African women was not found. Similarly. In the case of cardiovascular diseases, the differences in the influence of GSTM1, GSTT1, GSTP1 and GSTA1 polymorphisms on their development or lack of it depending on the continent were shown. These examples show that the development of the above-mentioned diseases is not only influenced by genetic changes, but their pathophysiology is more complex. The mere presence of a specific genotype within a studied polymorphism may not predispose to cancer, but in combination with environmental factors, which often depend on the place of residence, it may elevate the chance of developing the selected disease.


Assuntos
Neoplasias da Mama , Doenças Cardiovasculares , Humanos , Feminino , Isoenzimas/genética , Doenças Cardiovasculares/genética , Predisposição Genética para Doença , Fatores de Risco , Polimorfismo Genético/genética , Glutationa Transferase/genética , Glutationa S-Transferase pi/genética , Genótipo , Neoplasias da Mama/genética , Glutationa , Estudos de Casos e Controles
7.
Int J Mol Sci ; 24(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37762656

RESUMO

Elucidating the molecular mechanisms controlling fruit development is a primary target for the improvement of new apple (Malus × domestica Borkh.) cultivars. The first two weeks of development following pollination are crucial to determine fruit characteristics. During this period, a lot of changes take place in apple fruit, going from rapid cell division to the production of important metabolites. In this work, attention was focused on the phenylpropanoid and flavonoid pathways responsible for the production of numerous compounds contributing to fruit quality, such as flavonols, catechins, dihydrochalcones and anthocyanins. A total of 17 isoenzymes were identified, belonging to seven classes of the phenylpropanoid and flavonoid pathways that, despite showing more than 80% sequence identity, showed differential expression regulation during the first two weeks of apple fruit development. This feature seems to be quite common for most of the enzymes of both pathways. Differential regulation of isoenzymes was shown to be present in both 'Golden Delicious' and a wild relative (Malus mandshurica), even though differences were also present. Each isoenzyme showed a specific pattern of expression in the flower and fruit organs, suggesting that genes coding for enzymes with the same function may control different aspects of plant biology. Finally, promoter analysis was performed in order to highlight differences in the number and type of regulatory motifs. Overall, our results indicate that the control of the expression of genes involved in the phenylpropanoid and flavonoid pathways may be very complex as not only enzymes belonging to the same class, but even putative isoenzymes, can have different roles for the plant. Such genes may represent an important regulatory mechanism, as they would allow the plant to fine-tune the processing of metabolic intermediates towards different branches of the pathway, for example, in an organ-specific way.


Assuntos
Malus , Malus/genética , Isoenzimas/genética , Flavonoides , Frutas/genética , Antocianinas
8.
Int J Mol Sci ; 24(16)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37629005

RESUMO

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and ultimately fatal neurodegenerative disease, characterized by a progressive depletion of upper and lower motor neurons (MNs) in the brain and spinal cord. The aberrant regulation of several PKC-mediated signal transduction pathways in ALS has been characterized so far, describing either impaired expression or altered activity of single PKC isozymes (α, ß, ζ and δ). Here, we detailed the distribution and cellular localization of the ε-isozyme of protein kinase C (PKCε) in human postmortem motor cortex specimens and reported a significant decrease in both PKCε mRNA (PRKCE) and protein immunoreactivity in a subset of sporadic ALS patients. We furthermore investigated the steady-state levels of both pan and phosphorylated PKCε in doxycycline-activated NSC-34 cell lines carrying the human wild-type (WT) or mutant G93A SOD1 and the biological long-term effect of its transient agonism by Bryostatin-1. The G93A-SOD1 cells showed a significant reduction of the phosphoPKCε/panPKCε ratio compared to the WT. Moreover, a brief pulse activation of PKCε by Bryostatin-1 produced long-term survival in activated G93A-SOD1 degenerating cells in two different cell death paradigms (serum starvation and chemokines-induced toxicity). Altogether, the data support the implication of PKCε in ALS pathophysiology and suggests its pharmacological modulation as a potential neuroprotective strategy, at least in a subgroup of sporadic ALS patients.


Assuntos
Esclerose Amiotrófica Lateral , Córtex Motor , Doenças Neurodegenerativas , Humanos , Proteína Quinase C-épsilon/genética , Esclerose Amiotrófica Lateral/genética , Isoenzimas/genética , Superóxido Dismutase-1/genética , Briostatinas/farmacologia , Neurônios Motores
9.
Free Radic Biol Med ; 208: 88-102, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37536460

RESUMO

Expansion of bone marrow-derived endothelial progenitor cells (EPCs) in vitro to obtain required cell numbers for therapeutic applications faces the challenge of growing cell senescence under the traditional normoxic culture condition. We previously found that 1% O2 hypoxic culture condition is favorable for reducing senescence of EPCs, but the mechanisms underlying the favorability are still unclear. Here, we found that, compared with normoxia, hypoxia induced a shift in lactate dehydrogenase (LDH) isozyme profile, which manifested as decreased LDH2 and LDH1 and increased LDH5, LDH4 and total LDHs. Moreover, under hypoxia, EPCs presented higher LDH activity, which could promote the conversion of pyruvate to lactate, as well as a higher level of NAD+, Bcl2 interacting protein 3 (BNIP3) expression and mitophagy. Additionally, under hypoxia, knock-down of the LDHA subunit increased the LDH2 and LDH1 levels and knock-down of the LDHB subunit increased the LDH5 level, while the simultaneous knock-down of LDHA and LDHB reduced total LDHs and NAD+ level. Inhibition of NAD+ recycling reduced BNIP3 expression and mitophagy and promoted cell senescence. Taken together, these data demonstrated that 1% O2 hypoxia induces a shift in the LDH isozyme profile, promotes NAD+ recycling, increases BNIP3 expression and mitophagy, and reduces EPC senescence. Our findings contribute to a better understanding of the connection between hypoxic culture conditions and the senescence of bone marrow-derived EPCs and provide a novel strategy to improve in vitro expansion of EPCs.


Assuntos
Células Progenitoras Endoteliais , NAD , Humanos , NAD/metabolismo , Células Progenitoras Endoteliais/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Medula Óssea/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/metabolismo , Senescência Celular
10.
Plant Physiol Biochem ; 201: 107895, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37478728

RESUMO

Glutamate dehydrogenase (GDH) is an enzyme at the crossroad of plant nitrogen and carbon metabolism. GDH catalyzes the conversion of 2-oxoglutarate into glutamate (2OG → Glu), utilizing ammonia as cosubstrate and NADH as coenzyme. The GDH reaction is reversible, meaning that the NAD+-dependent reaction (Glu → 2OG) releases ammonia. In Arabidopsis thaliana, three GDH isoforms exist, AtGDH1, AtGDH2, and AtGDH3. The subject of this work is AtGDH2. Previous reports have suggested that enzymes homologous to AtGDH2 contain a calcium-binding EF-hand motif located in the coenzyme binding domain. Here, we show that while AtGDH2 indeed does bind calcium, the binding occurs elsewhere and the region predicted to be the EF-hand motif has a completely different structure. As the true calcium binding site is > 20 Å away from the active site, it seems to play a structural, rather than catalytic role. We also performed comparative kinetic characterization of AtGDH1 and AtGDH2 using spectroscopic methods and isothermal titration calorimetry, to note that the isoenzymes generally exhibit similar behavior, with calcium having only a minor effect. However, the spatial and temporal changes in the gene expression profiles of the three AtGDH genes point to AtGDH2 as the most prevalent isoform.


Assuntos
Arabidopsis , Glutamato Desidrogenase , Glutamato Desidrogenase/genética , Glutamato Desidrogenase/metabolismo , Arabidopsis/metabolismo , Cálcio/metabolismo , NAD/metabolismo , Amônia/metabolismo , Coenzimas/metabolismo , Ácido Glutâmico/metabolismo , Sítios de Ligação , Isoenzimas/genética , Isoenzimas/metabolismo
11.
Plant Mol Biol ; 112(4-5): 199-212, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37294528

RESUMO

Amylopectin is a highly branched glucan which accounts for approximately 65-85% of starch in most plant tissues. It is crucially important to understand the biosynthetic process of this glucan in regulating the structure and functional properties of starch granules. Currently, the most accepted ideas of structural feature and biosynthesis of amylopectin are that amylopectin is composed of a branched element called "cluster" and that the essential process of amylopectin biosynthesis is to reproduce a new cluster from the existing cluster. The present paper proposes a model explaining the whole process of amylopectin biosynthesis as to how the new cluster is reproduced by concerted actions of multiple isoforms of starch biosynthetic enzymes, particularly by combinations of distinct roles of starch branching enzyme (BE) isoforms. This model proposes for the first time the molecular mechanism as to how the formation of a new cluster is initiated, and the reason why BEI can play a major role in this step. This is because BEI has a rather broad chain-length preference compared to BEIIb, because a low preference of BEI for the substrate chain-length is advantageous for branching a couple of elongated chains that are not synchronously formed and thus these chains having varied lengths could be safely attacked by this isoform. On the contrary, it is unlikely that BEIIb is involved in this reaction because it can react to only short chains having degree of polymerization of 12-14. BEIIa is possibly able to complement the role of BEI to some extent, because BEIIa can attack basically short chains but its chain-length preference is lower compared with BEIIb. The model implies that the first branches mainly formed by BEI to construct the amorphous lamellae whereas the second branches predominantly formed by BEIIb are located mainly in the crystalline lamellae. This paper provides new insights into the roles of BEI, BEIIb, and BEIIa in amylopectin biosynthesis in cereal endosperm.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana , Oryza , Amilopectina/química , Enzima Ramificadora de 1,4-alfa-Glucana/genética , Isoenzimas/genética , Amido , Glucanos , Reprodução
12.
Clin Med Res ; 21(1): 6-13, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37130784

RESUMO

Objective: The mineralocorticoid receptor (MR) has two ligands, aldosterone and cortisol. Hydroxysteroid 11-beta dehydrogenase (HSD11B) isoenzymes regulate which ligand will bind to MR. In this study we aimed to evaluate the expression of the MR and the HSD11B isozymes in peripheral polymorphonuclear cells (PMNs) in critical illness for a 13-day period.Design: Prospective studySetting: One multi-disciplinary intensive care unit (ICU)Participants: Forty-two critically ill patientsMethods: Messenger RNA (mRNA) expression of MR, HSD11B1, and HSD11B2, aldosterone levels, and plasma renin activity (PRA) were measured in 42 patients on ICU admission and on days 4, 8, and 13. Twenty-five age and sex-matched healthy subjects were used as controls.Results: Compared to healthy controls, MR expression in critically ill patients was lower during the entire study period. HSD11B1 expression was also lower, while HSD11B2 expression was higher. In patients, PRA, aldosterone, the aldosterone:renin ratio, and cortisol remained unaltered during the study period.Conclusion: Our results suggest that, in our cohort of critically ill patients, local endogenous cortisol availability is diminished, pointing towards glucocorticoid resistance. Aldosterone probably occupies the MR, raising the possibility that PMNs might be useful to study to gain insights into MR functionality during pathological states.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2 , Aldosterona , Receptores de Mineralocorticoides , Humanos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Estado Terminal , Regulação para Baixo , Hidrocortisona/metabolismo , Hidroxiesteroides , Isoenzimas/genética , Isoenzimas/metabolismo , Estudos Prospectivos , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Renina/genética , Renina/metabolismo , Regulação para Cima
13.
FEBS Open Bio ; 13(7): 1333-1345, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37166445

RESUMO

We previously reported that diacylglycerol (DG) kinase (DGK) δ interacts with DG-generating sphingomyelin synthase (SMS)-related protein (SMSr), but not SMS1 or SMS2, via their sterile α motif domains (SAMDs). However, it remains unclear whether other DGK isozymes interact with SMSs. Here, we found that DGKζ, which does not contain SAMD, interacts with SMSr and SMS1, but not SMS2. Deletion mutant analyses demonstrated that SAMD in the N-terminal cytosolic region of SMSr binds to the N-terminal half catalytic domain of DGKζ. However, the C-terminal cytosolic region of SMS1 interacts with the catalytic domain of DGKζ. Taken together, these results indicate that DGKζ associates with SMSr and SMS1 in different manners and suggest that they compose new DG signaling pathways.


Assuntos
Diacilglicerol Quinase , Isoenzimas , Diacilglicerol Quinase/genética , Diacilglicerol Quinase/metabolismo , Isoenzimas/genética
14.
Gene ; 876: 147517, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37257792

RESUMO

Allozymes present several classical examples of divergent selection, including the variation in the cytosolic aspartate aminotransferase (AAT) in the intertidal snails Littorina saxatilis. AAT is a part of the asparate-malate shuttle, in the interidal molluscs involved in the anaerobic respiration during desiccation. Previous allozyme studies reported the sharp gradient in the frequencies of the AAT100and the AAT120 alleles between the low and high shores in the Northern Europe and the differences in their enzymatic activity, supporting the role of AAT in adaptation to desiccation. However, the populations in the Iberian Peninsula showed the opposite allele cline. Using the mRNA sequencing and the genome pool-seq analyses we characterize DNA sequences of the different AAT alleles, report the amino acid replacements behind the allozyme variation and show that same allozyme alleles in Northern and Southern populations have different protein sequences. Gene phylogeny reveals that the AAT100 and the northern AAT120 alleles represent the old polymorphism, shared among the closely related species of Littorina, while the southern AAT120 allele is more recently derived from AAT100. Further, we show that the Aat gene is expressed at constitutive level in different genotypes and conditions, supporting the role of structural variation in regulation of enzyme activity. Finally, we report the location and the structure of the gene in the L. saxatilis genome and the presence of two additional non-functional gene copies. Altogether, we provide a missing link between the classical allozyme studies and the genome scans and bring together the results produced over decades of the genetic research.


Assuntos
Isoenzimas , Polimorfismo Genético , Animais , Aspartato Aminotransferases , Isoenzimas/genética , Caramujos/genética , Filogenia
15.
Int J Biol Macromol ; 241: 124658, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37119916

RESUMO

Mushroom laccases are biocatalysts that oxidize various substrates. To identify a novel enzyme involved in lignin valorization, we isolated and characterized laccase isoenzymes from the mushroom Hericium erinaceus. The laccase cDNAs (Lac1a and Lac1b) cloned from the mushroom mycelia consisted of 1536 bp and each encoded a protein with 511 amino acids, containing a 21-amino-acid signal peptide. Comparative phylogenetic analysis revealed high homology between the deduced amino acid sequences of Lac1a and Lac1b and those from basidiomycetous fungi. In the Pichia pastoris expression system, high extracellular production of Lac1a, a glycoprotein, was achieved, whereas Lac1b was not expressed as a secreted protein because of hyper-glycosylation. Biochemical characterization of the purified recombinant Lac1a (rLac1a) protein revealed its oxidizing efficacy toward 14 aromatic substrates. The highly substrate-specific rLac1a showed catalytic efficiencies of 877 s-1 mM-1, 829 s-1 mM-1, 520 s-1 mM-1, and 467 s-1 mM-1 toward 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), hydroquinone, guaiacol, and 2,6-dimethylphenol, respectively. Moreover, rLac1a showed approximately 10 % higher activity in non-ionic detergents and >50 % higher residual activity in various organic solvents. These results indicate that rLac1a is a novel oxidase biocatalyst for the bioconversion of lignin into value-added products.


Assuntos
Agaricales , Lacase , Lacase/química , Lignina/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Clonagem Molecular , Filogenia , Oxirredução , Agaricales/metabolismo
16.
Iran Biomed J ; 27(2 & 3): 136-45, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-37073115

RESUMO

Background: Different genotypes of Echinococcus granulosus sensu lato (s.l.) infect humans and ungulate animals, causing cystic echinococcosis. Simultaneous isoenzyme, as well as molecular characterizations of this parasite, has not yet been investigated in Iran. The present study aimed to evaluate the isoenzyme pattern of the E. granulosus sensu stricto (s.s.) and E. canadensis genotypes in Iran. Methods: A total of 32 (8 humans and 24 animals) cystic echinococcosis cysts were isolated from Shiraz, Tehran, Ilam, and Birjand from May 2018 to December 2020. The DNAs were extracted and their genotypes were determined by molecular methods. Enzymes were extracted from the cysts and subjected to polyacrylamide gel electrophoresis. The activities of glucose-6-phosphate sehydrogenase (G6PD), malate dehydrogenase (MDH), malic enzyme (ME), nucleoside hydrolyse 1 (NH1), and isocitrate dehydrogenase (ICD) were examined in the cyst samples using isoenzyme method and compared it with the genotyping findings. Results: DNA sequence analysis of the samples showed that the specimens contained 75% E. granulosus s.s. (G1) and 25% E. canadensis (G6) genotypes. The isoenzyme pattern of ICD in both genotypes produced a six-band pattern with different relative factors. The G6PD also produced two bands with different relative migrations in both genotypes. The MDH and NH1 systems revealed a two-band pattern, while only one band was generated in the ME enzyme in the E. granulosus s.s. genotype. In the E. canadensis, the MDH and NH1 enzymes showed one band, and the ME enzyme represented a two-band pattern. Conclusion: Our findings suggest that E. granulosus s.s. and E. canadensis genotypes have entirely different isoenzyme patterns for NH1, G6PD, MDH, and ME.


Assuntos
Cistos , Equinococose , Echinococcus granulosus , Animais , Humanos , Echinococcus granulosus/genética , Isoenzimas/genética , Irã (Geográfico) , Equinococose/parasitologia , Genótipo
17.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36982634

RESUMO

Adenylate kinase (AK) regulates adenine nucleotide metabolism and catalyzes the ATP + AMP ⇌ 2ADP reaction in a wide range of organisms and bacteria. AKs regulate adenine nucleotide ratios in different intracellular compartments and maintain the homeostasis of the intracellular nucleotide metabolism necessary for growth, differentiation, and motility. To date, nine isozymes have been identified and their functions have been analyzed. Moreover, the dynamics of the intracellular energy metabolism, diseases caused by AK mutations, the relationship with carcinogenesis, and circadian rhythms have recently been reported. This article summarizes the current knowledge regarding the physiological roles of AK isozymes in different diseases. In particular, this review focused on the symptoms caused by mutated AK isozymes in humans and phenotypic changes arising from altered gene expression in animal models. The future analysis of intracellular, extracellular, and intercellular energy metabolism with a focus on AK will aid in a wide range of new therapeutic approaches for various diseases, including cancer, lifestyle-related diseases, and aging.


Assuntos
Nucleotídeos de Adenina , Adenilato Quinase , Animais , Humanos , Nucleotídeos de Adenina/metabolismo , Adenilato Quinase/metabolismo , Nucleotídeos , Adenina , Isoenzimas/genética , Isoenzimas/metabolismo , Monofosfato de Adenosina , Trifosfato de Adenosina/metabolismo
18.
Int J Oncol ; 62(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36960860

RESUMO

Aberrant expression of long non­coding RNA (lncRNA) plays an important role in malignant progression of colon cancer and has become a new therapeutic target. In the present study, it was found that the expression of a novel lncRNA 495810 was significantly upregulated in colon cancer and correlated with poor prognosis in patients with colorectal cancer. The highly expressed lncRNA 495810 promoted the proliferation and inhibited apoptosis of CRC cells. Furthermore, the results of gene enrichment analysis indicated that 495810­targeted genes were enriched in the glycolysis pathway and overexpression of 495810 enhanced aerobic glycolysis in colon cancer cells. More importantly, the expression of lncRNA 495810 was positively correlated with the glycolytic rate­limiting enzyme pyruvate kinase isozyme M2 (PKM2). Notably, the data suggested that lncRNA 495810 physically interacted with PKM2 protein and enhanced PKM2 protein stability via the ubiquitin­proteasome pathway. The present findings suggested that lncRNA 495810, a glycolysis­related oncogenic lncRNA, is a potential biomarker for predicting prognosis and a therapeutic target for colon cancer.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Neoplasias do Colo/genética , Glicólise/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
19.
Sci Adv ; 9(12): eadd9554, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36961904

RESUMO

Isoenzyme divergence is a prevalent mechanism governing tissue-specific and developmental stage-specific metabolism in mammals. The lactate dehydrogenase (LDH) isoenzyme spectrum reflects the tissue-specific metabolic status. We found that three tetrameric isoenzymes composed of LDHA and LDHB (LDH-3/4/5) comprise the LDH spectrum in T cells. Genetically deleting LDHA or LDHB altered the isoenzyme spectrum by removing all heterotetramers and leaving T cells with LDH-1 (the homotetramer of LDHB) or LDH-5 (the homotetramer of LDHA), respectively. Accordingly, deleting LDHA suppressed glycolysis, cell proliferation, and differentiation. Unexpectedly, deleting LDHB enhanced glycolysis but suppressed T cell differentiation, indicating that an optimal zone of glycolytic activity is required to maintain cell fitness. Mechanistically, the LDH isoenzyme spectrum imposed by LDHA and LDHB is necessary to optimize glycolysis to maintain a balanced nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide hydrogen pool. Our results suggest that the LDH isoenzyme spectrum enables "Goldilocks levels" of glycolytic and redox activity to control T cell differentiation.


Assuntos
Isoenzimas , NAD , Animais , Isoenzimas/genética , Isoenzimas/metabolismo , NAD/metabolismo , Linfócitos T/metabolismo , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Lactato Desidrogenase 5/metabolismo , Glicólise , Diferenciação Celular , Mamíferos/metabolismo
20.
J Chem Ecol ; 49(3-4): 116-132, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36877397

RESUMO

Cardiotonic steroids (CTS) are a group of compounds known to be toxic due to their ability to inhibit the Na+/K+-ATPase (NKA), which is essential to maintain the balance of ions in animal cells. An evolutionary strategy of molecular adaptation to avoid self-intoxication acquired by CTS defended organisms and their predators is the structural modification of their NKA where specific amino acid substitutions confer resistant phenotypes. Several lineages of poison dart frogs (Dendrobatidae) are well known to sequester a wide variety of lipophilic alkaloids from their arthropod diet, however there is no evidence of CTS-sequestration or dietary exposure. Interestingly this study identified the presence of α-NKA isoforms (α1 and α2) with amino acid substitutions indicative of CTS-resistant phenotypes in skeletal muscle transcriptomes obtained from six species of dendrobatids: Phyllobates aurotaenia, Oophaga anchicayensis, Epipedobates boulengeri, Andinobates bombetes, Andinobates minutus, and Leucostethus brachistriatus, collected in the Valle del Cauca (Colombia). P. aurotaenia, A. minutus, and E. boulengeri presented two variants for α1-NKA, with one of them having these substitutions. In contrast, O. anchicayensis and A. bombetes have only one α1-NKA isoform with an amino acid sequence indicative of CTS susceptibility and an α2-NKA with one substitution that could confer a reduced affinity for CTS. The α1 and α2 isoforms of L. brachistriatus do not contain substitutions imparting CTS resistance. Our findings indicate that poison dart frogs express α-NKA isoforms with different affinities for CTS and the pattern of this expression might be influenced by factors related to evolutionary, physiological, ecological, and geographical burdens.


Assuntos
Glicosídeos Cardíacos , Venenos , Animais , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Sódio/metabolismo , Íons/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...